The presence or absence of alkenes was determined by examining the peaks of the mixture before and after treatment with a few drops of Br₂ in CCl₄. The data for each species are listed in Table 1

Reference mixture The n-alkanes from A verticillata were separated and collected with a Varian 90P G C The detector was at 310°, the collector at 290°, the injection port at 300°, and the column at 210° for the C_{23} – C_{28} alkanes and at 235° for the C_{29} – C_{32} alkanes A 5 ft 1/4 in SS column packed with 3% SE-30 on 100/120 Varaport 30 and a helium flow rate of 60 ml/min were used

Each individual peak was trapped in a capillary tube and subjected to mass spectral analysis. The formula for each alkane was obtained from the parent ion peak. The spectra were typical for *n*-alkanes and were devoid of any spurious peaks attributable to isoalkanes.

Acknowledgements—This work was partly supported by a grant from the Illinois Division-American Cancer Society We wish to thank Dr P Sorensen of the NIU Biological Science Department for helpful discussions

Key Word Index-Asclepias, Asclepiadaceae, alkanes

Phytochemistry, 1972, Vol. 11, pp. 438 to 439 Pergamon Press Printed in England

BIGNONIACEAE

CHRYSIN-7-RUTINOSIDE FROM THE LEAVES OF DOLICHANDRONE FALCATA

S. SANKARA SUBRAMANIAN, S NAGARAJAN and N SULOCHANA

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 5 August 1971)

Plant Dolichandrone falcata Seem Source. Annamalai University Campus, South India Occurrence. Distributed throughout India ¹ Uses Medicinal ¹

Present work. Dried leaves extracted with 80% hot ethanol, and the aq. concentrate fractionated into petrol (40-60°), ether, EtOAc and MeCOEt

Ether extract Luteolin (acetate, m p and mixed m p) and chrysin (R_f and co-chromatography with authentic samples)

Flavonoid	R_f (Whatman No 1, ascending 28 \pm 2°)							
	H₂O	15% HOAc	30% HOAc	60% HOAc	BAW	H ₂ O satd phenol	Forestal	ТВА
Chrysin-7-rutinoside	12	29	53	76	40	70	83	68
Chrysin-7-glucoside	04	16	39	66	54	50	75	49
Chrysin		02	20	79	97	93	88	96

Table 1 R_f s of the flavonoids of Dolichandrone falcata

¹ Wealth of India, Raw Materials, Vol III, p 100, CSIR, New Delhi (1952)

MeCOEt extract. Chrysin-7-rutinoside, yield, 0.4%, m.p. $248-250^{\circ}$, λ_{max} (EtOH) 269, 308 nm, λ_{min} 235 nm, λ_{A1C1_3} 281, 322, 382 nm, no shift with NaOAc in either band, IR (KBr) 3465, 2920, 1658, 1610, 1590, 1495, 1455, 1250, 769, 680, 665 cm⁻¹; R_f —Table 1, acetate, mp 247-250° (EtOH), glycoside sparingly soluble in usual organic solvents, soluble in pyridine On boiling with 10% H₂SO₄ in HOAc for 4 hr, hydrolysed to chrysin (R_f , Table 1, co-chromatography with authentic sample, acetate, m.p 192-194°) and glucose and rhamnose (R_f and co-chromatography) in equal proportions Further, on partial hydrolysis (N HCl, 100° , 5 min), chrysin-7-glucoside (R_f —Table 1) and rhamnose were obtained

EtOAc extract Chrysin-7-rutinoside identified (PC)

Comment This is the first report of chrysin-7-rutinoside; chrysin and its glucuronide are known to occur in Oroxylum indicum² and Scutellaria³ of the same family

Acknowledgements—We thank Dr T R Govindachari, Director, CIBA Research Centre, Bombay-63 for the spectral data and Prof K. Rangaswami Ayyangar, Annamalai University for the authenticated plant material Our thanks are due to the Principal, J I P.M E R for encouragement

² P K Bose and S N BHATTACHARYA, J Indian Chem Soc 15, 311 (1938)

³ C A. Marsh, Biochem J 59, 58 (1955)

Key Word Index-Dolichandrone falcata, Bignoniaceae, flavones, chrysin-7-rutinoside

Phytochemistry, 1972, Voi 11, pp 439 to 440 Pergamon Press Printed in England

FLAVONOIDS OF THE LEAVES OF OROXYLUM INDICUM AND PAJANELIA LONGIFOLIA

S. SANKARA SUBRAMANIAN and A. G R NAIR

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 5 August 1971)

Plant Oroxylum indicum Vent ¹ Uses Medicinal. ¹ Previous work Chrysin, baicalein and oroxylin-A from the bark of stem and root, ¹ baicalein-7-glucoside from seeds ¹

Present work Fresh leaves extracted with hot 80% alcohol and the aq concentrate fractionated into petrol, ether, EtOAc soluble fractions and the aq. mother liquor

Ether fraction. Baicalein and scutellarein (R_f , colour reactions, co-chromatography with authentic samples).

EtOAc fraction. Flavone glycoside—0·1%, yellow needles (MeOH), m.p. 198–200°, λ_{max} (EtOH) 215, 281, 332 nm, (NaOAc) 281, 330 nm and (AlCl₃) 292, 349 nm. IR bands at

¹ Wealth of India, Raw Materials, Vol VII, pp 107, 211, CSIR, New Delhi (1966)